Graph Databases and the #PanamaPapers

BED-con 2016 Stefan Armbruster

(Stefan)-[:WORKS_FOR]->(Neo4j)

stefan@neo4j.com | @darthvader42 github.com/sarmbruster | blog.armbruster-it.de Stefan Armbruster - Field Engineer @Neo4j

A GLOBAL INVESTIGATION

panama

070

Politicians, Criminals and the Rogue Industry That Hides Their Cash

Kudos to Michael Hunger @mesiiri source material taken from

- the ICIJ presentation
- the <u>Reddit AMA</u>
- online publications (SZ, Guardian, TNW et.al.)
- the ICIJ website
 - <u>https://panamapapers.icij.org/</u>
 - The Power Players
 - <u>Key Numbers & Figures</u>

[John Doe] Hello. This is John Doe Interested in data? eutsche Zeitung

[John Doe]

We're very interested. There are a couple of conditions. My life is in danger. We will only chat over encrypted files. No meeting, ever. The choice of stories is obviously up to you.

[Süddeutsche Zeitung]

Why are you doing this?

the ministerior

[John Doe]

I want to make these crimes public.

Amount of data compared to previous leaks

INTERNATIONAL CONSORTIUM

OF INVESTIGATIVE JOURNALISTS

≈2,6 TB Panama Papers/ICIJ (2016)

THE INTERNATIONAL CONSORTIUM

OF INVESTIGATIVE JOURNALISTS

INTERNATIONAL CONSORTIUM

The World's Best Cross-Border Investigative Team

<u>12 staff members</u> (USA, Costa Rica, Venezuela, Germany, France, Spain) **50% of the team = Data & Research Unit**

3 million files

10 seconds per

file

1 yr / 35 servers = 1.5 weeks

Investigators used Nuix's optical character recognition to make millions of scanned documents text-searchable. They used Nuix's named entity extraction and other analytical tools to identify and cross-reference the names of Mossack **Fonseca clients** through millions of

Unstructured data extraction

- Nuix professional OCR service
- ICIJ Extract (open source, Java: <u>https://github.com/ICIJ/extract</u>), leverages Apache Tika, Tesseract OCR and JBIG2-ImageIO.

Structured data extraction

• A bunch of Python

Database

- Apache Solr (open source, Java)
- Redis (open source, C)

• Neo4j (open source, Java)

Арр

- Blacklight (open source, Rails)
- Linkurious (closed source, JS)

Stack

neo4j* registered address IFG Trust Channel Islands) Limited FIRST NAMES GROUP (JERSEY) Shareholder registere Shareholder RUSSELL PROPERTIES S.A. SANDS INVEST & FINANCE LIMITED Director and shareholder Shareholder Beneficiary has similar name and address as Patrick Henri Devillers registered address No. 318, Building K Huiyuan Apartment Asian Olympic Village Chaoyang District Beijing China

2

- %*F ▲

PUBLIC OF PANAM atures of Panama Corpe

USINESS TRANSACTIO Panama corporatio choose.

TAXATION Full exemption

AUTHORISED CAP' Nominative

No paid-in No minima

Init

50 EU

DIRECTORS Share

MOSSACK X FONSECA www.mossfon.com

REPUBLIC OF PANAMA Features of Panama Corporations

BUSINESS TRAN

- 16323871 B

Partathe TAXATE

connected Documents

×

×

PRIVANA

The world is a graph – everything is connected

- people, places, events
- companies, markets
- countries, history, politics
- sciences, art, teaching
- technology, networks, machines, applications, users
- software, code, dependencies, architecture, deployments
- criminals, fraudsters and their behavior

We need to store and query our meta-data!

Real, inferred and integrated

Property Graph Model

Nodes

- The entities in the graph
- Can have name-value properties
- Can be *labeled*

Relationships

- Relate nodes by type and direction
- Can have name-value properties

Your friend Neo4j

An *open-source graph database*

- Manage and store your connected data as a graph
- Query relationships easily and quickly
- Evolve model and applications to support new requirements and insights
- Built to solve relational pains

Your friend Neo4j

An open-source graph database

- Built for Connected Data
- Easy to use
- Optional Schema
- Highly Scalable Performance
- Transactional ACID-Database

Value from Data Relationships Common Use Cases

Internal Applications

Master Data Management

Network and IT Operations

Fraud Detection

Customer-Facing Applications

Real-Time Recommendations

Graph-Based Search

Identity and Access Management

Whiteboard to Graph

CREATE pattern **MERGE** pattern

SET

DELETE

REMOVE

MATCH pattern WHERE *predicate* **ORDER BY** expression SKIP ... LIMIT ...

RETURN *expression* AS *alias* ...

WITH *expression* AS alias, ... UNWIND *list* AS *item* **LOAD** CSV FROM *"url"* AS *row*

Getting Data into Neo4j

Cypher-Based "LOAD CSV"

- Transactional (ACID) writes
- Initial and incremental loads of up to 10 million nodes and relationships

Getting Data into Neo4j

Load JSON with Cypher

- Load JSON via procedure
- Deconstruct the document
- Into a non-duplicated graph model

Getting Data into Neo4j

CSV Bulk Loader *neo4j-import*

- For initial database population
- For loads with 10B+ records
- Up to 1M records per second

bin/neo4j-import --into people.db

- --nodes:Person people.csv
- --nodes:Company companies.csv
- --relationship:STAKEHOLDER stakeholders.csv

The Steps Involved in the Document Analysis

- 1. Acquire documents
- 2. Classify documents
 - Scan / OCR
 - Extract document metadata
- 3. Whiteboard domain and questions, determine
 - entities and their relationships
 - potential entity and relationship properties
 - sources for those entities and their properties

The Steps Involved in the Document Analysis

- 4. Develop analyzers, rules, parsers and named entity recognition
- 5. Parse and store metadata, document and entity relationships
 - Parse by author, named entities, dates, sources and classifications
- 6. Infer entity relationships
- 7. Compute similarities, transitive cover and triangles
- 8. Analyze data using graph queries and visualizations

We need a Data Model

Either based on our use cases & questions On the entities present in our meta-data and data.

Meta Data Entities

- Document, Email, Contract, DB-Record
- Meta: Author, Date, Source, Keywords
- Conversation: Sender, Receiver, Topic
- Money Flows

Actual Entities

- Person
- Representative (Officer)
- Address
- Client
- Company
- Account

Data Model – Relationships

Meta-Data

- sent, received, cc'ed
- mentioned, topic-of
- created, signed
- attached
- roles
- family relationships

Activities

- open account
- manage
- has shares
- registered address
- money flow

The ICIJ Data Model

The ICIJ Data Model

- Simplistic Datamodel with 4 Entities and 5 Relationships
- We only know the published model
- Missing
 - Documents, Metadata
 - Family Relationships
 - Connections to Public Record Databases
- Contains Duplicates
- Relationship information stored on entities
- Could use richer labeling

Example Dataset - Azerbaijan's President Ilham Aliyev

- was already previously investigated
- whole family involved
- different shell companies & involvements

Ilham Aliyev President of Azerbaijan (2003-present) Relatives in the data: *Prime Minister Ilham Aliyev's wife, children and sister*

 Θ

Embed (/>

Related countries Azerbaijan

The family of Azerbaijan President Ilham Aliyev leads a charmed, glamorous life, thanks in part to financial interests in almost every sector of the economy. His wife, Mehriban, comes from the privileged and powerful Pashayev family that

http://neo4j.com/graphgist/ec65c2fa-9d83-4894-bc1e-98c475c7b57a

Demo Time – Follow Along

:play http://guides.neo4j.com/ graphgist/panama_papers.html

Based On: http://neo4j.com/blog/analyzing-panama-papers-neo4j/

Visual Graph Search

For Non-Developers

Linkurious.js

- •JS library based on sigma.js
- Integrates with Neo4j using
 Cypher

https://github.com/Linkurious/linkurious.js/

Popoto.js

- •JS library based on **d3.js**
- •Uses Graph Metadata to offer visual search
- •Categories to filter
 - Instances
- •Component based extensions
- •Zero Config with
 - $M/ab \Gamma_{t}$

http://www.popotojs.com/

Visual Search Bar

Q

- •Based on visualsearch.js
- •Uses graph metadata for parametrization
- •Limit suggestions by selected items

» You searched for: Actor.name: "Zach Grenier". (1 node)

O ACTOR.NAME: Zach Grenier

maxdemarzi.com/2013/07/03/the-last-mile/

Facebook Graph Search

- •Natural Language to Cypher
- •Ruby TreeTop Gem for NLP

Graph Search

friends who like Neo4j Search Try: friends who like wine , people who like wine and cheese , people who like cycling and live in Florida

Cypher Query:

START me = node({me}), thing = node:things({thing}) MATCH me -[:friends]-> people, people -[:likes]-> thing RETURN DISTINCT people, people.uid, people.name, people.image_url LIMIT 100 Parameters: {"me"=>1, "thing"=>"name: Neo4j"} Want your own Graph Search? Contact me and learn more about Neo4j and NeoTechnology

maxdemarzi.com/2013/01/28/facebook-graph-search-with-cypher-and-neo4j/

Users Love Neo4j

Performance

"The Neo4j graph database gives us drastically improved performance and a simple language to query our connected data"

- Sebastian Verheugher, Telenor 🧹

Scale and Availability

"As the current market leader in graph databases, and with enterprise features for scalability and availability, Neo4j is the right choice to meet our demands."

- Marcos Wada, Walmart Walm

Walmart 🔀

"We found Neo4j to be literally thousands of times faster than our prior MySQL solution, with queries that require 10 to 100 times less code. Today, Neo4j provides eBay with functionality that was previously impossible."

Volker Pacher Senior Developer

Summary - Use the Right Database for the JobImage: DeciditDiscrete Data
Minimally
connected dataConnected Data
Focused on
Data Relationships

Graph Databases are designed for data relationships

Relational DBMS

Development Benefits Easy model maintenance Easy query

Other NoSQL

Deployment Benefits Ultra high performance Minimal resource usage

Graph DBMS

Real-Time Query Performance

Graph Versus Relational and Other NoSQL Databases

Connectedness and Size of Data Set

ICIJ editor Mar Cabra presenting at GraphConnect

GRAPH CONNECT EUROPE LONDON + 26 APPREL 2016 Mar Cabra is the Editor of the Data and Research Unit at <u>the International</u> <u>Consortium of Investigative Journalists</u> (ICIJ), the organization responsible for breaking <u>the Panama Papers</u> story.

Mar has over 11 years of experience working in data journalism, including the BBC, CNN and the Miami Herald.

At GraphConnect, Mar will be presenting on "How the ICIJ Used Neo4j to Unravel the Panama Papers."

neo4j.com/blog/top-10-graphconnect-europe-speakers/

More Insight

- Neo4j Blog
 - <u>http://neo4j.com/blog/panama-papers/</u>
 - <u>http://neo4j.com/blog/analyzing-panama-papers-neo4j/</u>
- ICIJ
 - <u>https://panamapapers.icij.org/</u>
 - <u>https://panamapapers.icij.org/the_power_players/</u>
 - <u>https://panamapapers.icij.org/graphs/</u>
- SZ
 - http://panamapapers.sueddeutsche.de/en/
- Guardian
 - <u>http://www.theguardian.com/news/series/panama-papers</u>

Users Love Neo4j – Will you too?

Ö Following

Really digging @neo4j. What use to be a bunch of complicated analysis scripts are now a handful of simple Cypher queries.

Reply 13 Retweeted * Favorited ... More RETWEETS FAVORITES 2 🕵 🌠 🚳 👰 31 38 Sourabh Jain Follow @iainsourabh2 Just got my hands on @neo4j and it simply

rocks!!!!! Amazingly easy to install, understand and code... Kudos to the Team..

A Reply 13 Retweet * Favorite

11:44 PM - 20 May 2014

loving @neo4j Browser -- what a beauty! Any DB should come bundled with such a slick interface #outofthebox Reply Retweeted revorited ... More 6 📓 💽 🛐 🎆 🖳 💽 🤪 🐊 FAVORITES RETWEETS Follow

Guillermo Szeliga gszeliga

I can't believe that @neo4j is actually real. Seems like a dream come true

Reply Retweeted Travorited . More

Follow

Get started with Neo4j today – Discover Value in Your Relationships

neo4j.com/developer

Thanks! Questions?

Slide Bucket

Why should I care?

Because Relationships Matter

What is it with Relationships?

- World is full of connected people, events, things
- There is "Value in Relationships" !
- What about Data Relationships?
- How do you store your object model?
- How do you explain JOIN tables to your boss?

Neo4j – allows you to connect the dots

- Was built to efficiently
 - store,
 - query and
 - manage highly connected
- Transactional, ACID
- Real-time OLTP
- Open source
- Highly scalable already on few machines

Relational DBs Can't Handle Data Relationships Well

- *Cannot model or store data and relationships* without complexity
- *Performance degrades* with number and levels of relationships, and database size
 - Query complexity grows with need for JOINs
- Adding new types of data and relationships requires schema redesign, increasing time to market

... making traditional databases **inappropriate** when data relationships are valuable in **real-time** Slow development Poor performance Low scalability Hard to maintain

NoSQL Databases *Don't* Handle Data Relationships

- No data structures to model or store relationships
- No query constructs to support data relationships
- *Relating data requires "JOIN logic"* in the application
- Additionally, *no ACID support* for transactions

... making NoSQL databases **inappropriate** when data relationships are valuable in **real-time**

Largest Ecosystem of Graph Enthusiasts

- 1,000,000+ downloads
- 27,000+ education registrants
- 25,000+ Meetup members in 29 countries
- 100+ technology and service partners
- 170+ enterprise subscription customers including 50+ Global 2000 companies

Value from Data Relationships Common Use Cases

Internal Applications Master Data Management Network and IT Operations Fraud Detection

Real-Time Recommendations Graph-Based Search Identity and Access Management

Graph Database Fundamentals

Express Complex Relationship Queries Easily

Find all reports and how many people they manage, up to 3 levels down

Cypher Query

```
MATCH (boss)-[:MANAGES*0..3]->(sub),
        (sub)-[:MANAGES*1..3]->(report)
WHERE boss.name = "John Doe"
RETURN sub.name AS Subordinate,
        count(report) AS Total
```

SQL Query

(SELECT T.directReportees AS directReportees, sum(T.count) AS count EROM (SELECT depth1Report
SELECT manager pid AS directReportees. 0 AS count	FROM person reporte
FROM person reportee manager	JOIN person reportee
WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName")	ON manager.directly
UNION	JOIN person reporter
SELECT manager.pid AS directReportees, count(manager,directly_manages) AS count	ON L1Reportees.direc
FROM person reportee manager	WHERE manager.pid
WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName")	GROUP BY directRepo
GROUP BY directReportees) AS T
UNION	GROUP BY directRepo
SELECT manager.pid AS directReportees, count(reportee.directly_manages) AS count	UNION
FROM person_reportee manager	(SELECT T.directReport
JOIN person_reportee reportee	FROM(
ON manager.directly_manages = reportee.pid	SELECT reportee.din
WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName")	FROM person_reporte
GROUP BY directReportees	JOIN person_reportee
UNION	ON manager.directly_
SELECT manager.pid AS directReportees, count(L2Reportees.directly_manages) AS count	WHERE manager.pid =
FROM person_reportee manager	GROUP BY directRepo
JOIN person_reportee L1Reportees	UNION
ON manager.directly_manages = L1Reportees.pid	SELECT L2Reportees.p
JOIN person_reportee L2Reportees	AS count
ON L1Reportees.directly_manages = L2Reportees.pid	FROM person_report
WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName")	JOIN person_reportee
GROUP BY directReportees	ON manager.directly_
) AS T	JOIN person_reportee
GROUP BY directReportees)	ON L1Reportees.direc
UNION	WHERE manager.pid
FROM () AS T
SELECT manager.directly manages AS directReportees, 0 AS count	GROUP BY directRepo
FROM person_reportee manager	UNION
WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName")	(SELECT L2Reportees.
UNION	FROM person_reporte
SELECT reportee.pid AS directReportees, count(reportee.directly_manages) AS count	JOIN person_reportee
FROM person_reportee manager	ON manager.directly_
JOIN person_reportee reportee	JOIN person_reportee
ON manager.directly_manages = reportee.pid	ON L1Reportees.direc
WHERE manager.pid = (SELECT id FROM person WHERE name = "fName IName")	WHERE manager.pid =
GROUP BY directReportees)
UNION	

tees nid AS directReportees. ees.directly_manages) AS count ee manager LIReportees manages = L1Reportees.pid L2Reportees ctly manages = L2Reportees.pid = (SELECT id FROM person WHERE name = "fName [Name") rtees rtees) rtees AS directReportees, sum(T.count) AS count rectly_manages AS directReportees, 0 AS count ee manager renortee manages = reportee.pid = (SELECT id FROM person WHERE name = "fName IName") rtees pid AS directReportees, count(L2Reportees.directly_manages) ee manager L1Reportees manages = L1Reportees.pid 212Reportees ctly_manages = L2Reportees.pid = (SELECT id FROM person WHERE name = "fName IName") rtees rtees) directly_manages AS directReportees, 0 AS count ee manager L1Reportees manages = L1Reportees.pid L2Reportees ctly manages = L2Reportees.pid = (SELECT id FROM person WHERE name = "fName IName")